A quasilinear parabolic singular perturbation problem
نویسندگان
چکیده
منابع مشابه
A quasilinear parabolic singular perturbation problem
in a pointwise sense and in a viscosity sense. Here uν denotes the derivative of u with respect to the inward unit spatial normal ν to the free boundary ∂{u > 0}, M = ∫ β(s) ds, α(ν,M) := Φ−1 ν (M) andΦν(α) := −A(αν)+αν ·F(αν), where A(p) is such that F(p) = ∇A(p) with A(0) = 0. Some of the results obtained are new even when the operator under consideration is linear. 2000 Mathematics Subject C...
متن کاملA Schrödinger singular perturbation problem
Consider the equation −ε∆uε + q(x)uε = f(uε) in R3, |u(∞)| < ∞, ε = const > 0. Under what assumptions on q(x) and f(u) can one prove that the solution uε exists and limε→0 uε = u(x), where u(x) solves the limiting problem q(x)u = f(u)? These are the questions discussed in the paper.
متن کاملA nonlinear singular perturbation problem
Let F (uε) + ε(uε − w) = 0 (1) where F is a nonlinear operator in a Hilbert space H, w ∈ H is an element, and ε > 0 is a parameter. Assume that F (y) = 0, and F ′(y) is not a boundedly invertible operator. Sufficient conditions are given for the existence of the solution to (1) and for the convergence limε→0 ‖uε−y‖ = 0. An example of applications is considered. In this example F is a nonlinear ...
متن کاملQuasilinear singularly perturbed problem with boundary perturbation.
A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.
متن کامل00 4 A singular perturbation problem
Consider the equation −ε 2 ∆u ε + q(x)u ε = f (u ε) in R 3 , |u(∞)| < ∞, ε = const > 0. Under what assumptions on q(x) and f (u) can one prove that the solution u ε exists and lim ε→0 u ε = u(x), where u(x) solves the limiting problem q(x)u = f (u)? These are the questions discussed in the paper.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Interfaces and Free Boundaries
سال: 2008
ISSN: 1463-9963
DOI: 10.4171/ifb/197