A quasilinear parabolic singular perturbation problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quasilinear parabolic singular perturbation problem

in a pointwise sense and in a viscosity sense. Here uν denotes the derivative of u with respect to the inward unit spatial normal ν to the free boundary ∂{u > 0}, M = ∫ β(s) ds, α(ν,M) := Φ−1 ν (M) andΦν(α) := −A(αν)+αν ·F(αν), where A(p) is such that F(p) = ∇A(p) with A(0) = 0. Some of the results obtained are new even when the operator under consideration is linear. 2000 Mathematics Subject C...

متن کامل

A Schrödinger singular perturbation problem

Consider the equation −ε∆uε + q(x)uε = f(uε) in R3, |u(∞)| < ∞, ε = const > 0. Under what assumptions on q(x) and f(u) can one prove that the solution uε exists and limε→0 uε = u(x), where u(x) solves the limiting problem q(x)u = f(u)? These are the questions discussed in the paper.

متن کامل

A nonlinear singular perturbation problem

Let F (uε) + ε(uε − w) = 0 (1) where F is a nonlinear operator in a Hilbert space H, w ∈ H is an element, and ε > 0 is a parameter. Assume that F (y) = 0, and F ′(y) is not a boundedly invertible operator. Sufficient conditions are given for the existence of the solution to (1) and for the convergence limε→0 ‖uε−y‖ = 0. An example of applications is considered. In this example F is a nonlinear ...

متن کامل

Quasilinear singularly perturbed problem with boundary perturbation.

A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.

متن کامل

00 4 A singular perturbation problem

Consider the equation −ε 2 ∆u ε + q(x)u ε = f (u ε) in R 3 , |u(∞)| < ∞, ε = const > 0. Under what assumptions on q(x) and f (u) can one prove that the solution u ε exists and lim ε→0 u ε = u(x), where u(x) solves the limiting problem q(x)u = f (u)? These are the questions discussed in the paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interfaces and Free Boundaries

سال: 2008

ISSN: 1463-9963

DOI: 10.4171/ifb/197